Journal of Organometallic Chemistry, 406 (1991) C15-C19
Elsevier Sequoia S.A., Lausanne
JOM 21680PC
Preliminary communication

Chiral arene-chromium-tricarbonyl complexes:
 a 2-step synthesis of halostachin analogues

A. Solladié-Cavallo and M. Bencheqroun
Laboratoire de Stéréochimie organometallique associé au CNRS, EHICS, I rue Blaise Pascal, 67008 Strashourg (France)

(Received November 12th, 1990)

Abstract

High diastereoselectivity ($\geqslant 98 / 2$) was obtained upon addition of the anion of t-butylformamidine (4) to chiral arene-chromium-tricarbonyl complexes 3a-c. After saponification and decomplexation (one-pot reaction) analogues of halostachin were obtained in high yield.

During work on asymmetric synthesis of bioactive substances [1-3], we developed a 3 -step synthesis [1] of optically pure aminoalcohols $1 \mathbf{a}-\mathrm{d}$. However two more steps were still necessary to reach the N-methylated target-compounds $\mathbf{2 a}-\mathbf{d}$, which are analogues of natural (R) or unnatural (S) halostachin (2) [4].

(1a, $\mathrm{R}=\mathrm{OMe}$
(2, $\mathrm{R}=\mathrm{H}: R(-)$-halostachin
1b, $\mathrm{R}=\mathrm{Me}$
2a, $\mathrm{R}=\mathrm{OMe}$
1c, $R=F$
$\mathbf{2 b}, \mathrm{R}=\mathrm{Me}$
1d, $\mathrm{R}=\mathrm{CF}_{3}$)
2c, $R=F$
2d, $\mathrm{R}=\mathrm{CF}_{3}$)

We report here our initial results on a 2 -step synthesis of the aminoalcohols $2 \mathbf{2 a - c}$ shown in Scheme 1.

We recently found that upon addition of benzaldehyde to formamidine carbanion very high yields ($90-95 \%$) could be obtained [5]; in spite of the different reactivity expected after $\mathrm{Cr}(\mathrm{CO})_{3}$-complexation of the aromatic ring, chiral complexed aldehydes $3 a-3 c$ underwent addition of the formamidine carbanion 4 with satisfactory yields. The result are shown in Table 1.

[^0]

Scheme 1.

Products 5a-5c were analysed by $200 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR and $50 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR spectroscopy before and after purification [6*, ${ }^{*}$]. Complete diastereoselectivity was observed in addition of anion 4 to compound 3 a , which is consistent with previous reports on nucleophilic additions to ortho-substituted complexes [1,8-10]. It was found, however, that addition of anion 4 to complex 3b gave a mixture of two isomers. Those two isomers could, of course, be the cisoid and transoid forms of the formamidine group (eq. 1) or the two possible diastereomers of the cisoid or of the transoid formamidine-forms (eq. 2). Because none of the non-equivalent proton signals ($\mathrm{N}-\mathrm{CH}_{3}, \mathrm{~N}-\mathrm{CH}_{2}$, aromatic $\mathrm{CH},-\mathrm{CH}-$) coalesce when the temperature is increased to $50^{\circ} \mathrm{C}$ in CDCl_{3} or to $80^{\circ} \mathrm{C}$ in DMSO- d_{6} (Fig. 1) we judged that they might be the two possible diastereomers of one of the formamidine forms (eq. 2).

1 RS
1 RR
To confirm this suggestion the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5 a , which showed only one type of signal, was recorded at various temperatures (Fig. 2). It was found that on lowering of the temperature the signals broadened and then some of them split, which must be attributed to a cisoid/transoid equilibrium. It would be difficult to explain why the cisoid/transoid forms would not exchange at $+80^{\circ} \mathrm{C}$ in

Table 1
Addition of anion 4 to complexes 3a-c

Starting material	Solvent	$\mathrm{t}^{\circ} \mathrm{C}$ (reaction time)	Added salt	Compound 5a-c	
3a	ether/THF	$-50^{\circ}(2 \mathrm{~h})$		70%	$\approx 100 / 0$
3a	ether/THF	$-25^{\circ}(2 \mathrm{~h})$		75%	$\approx 100 / 0$
3b	ether/THF	$-50^{\circ}(2 \mathrm{~h})$		75%	$70 / 30$
3b	ether/THF	$-130^{\circ}(1 \mathrm{~h})$		85%	$80 / 20$
3b	THF	$-50^{\circ}(2 \mathrm{~h})$	MgBr_{2}	80%	$\approx 100 / 0$
3b	THF	$-78^{\circ}(3,5 \mathrm{~h})$		90%	$80 / 20$
3c	THF	$-50^{\circ}(4,5 \mathrm{~h})$	MgBr_{2}	55%	$\approx 100 / 0$

compound 5b but exchange at $-20^{\circ} \mathrm{C}$ in compound 5 a and so it is reasonable to conclude that the two $\mathbf{5 b}$ isomers are the two possible diastereomers.

Such a poor diastereoselectivity $(80 / 20-70 / 30)$ was not observed in the reactions of the ortho-substituted complexes, except in the case of the KF-induced nitromethane addition [11]. Fortunately replacing Li^{+}by Mg^{2+} led to an increase in the diastereoselectivity to $98 / 2$ (the other isomer was not detected in the 200 $\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra).

Saponification of the formamidine group and decomplexation can be carried out quantitatived in one step. Because of the high diastereoselectivity obtained under

Fig. 1. Effect of increasing the temperature on the ${ }^{1} \mathrm{H}$ NMR spectrum of mixture $5 \mathbf{b}$.

Fig. 2. Effect of lowering the temperature on the ${ }^{1}$ H NMR spectrum of $\mathbf{5 a}$.
suitable conditions it is evident that, when optically pure complexes are used [12] this method will provide optically pure amino alcohols of type 5 in only two steps. From our model of the approach of the reagents [13] it can also be expected that the $1 S$ complexes will afford the desired R aminoalchols.

References and notes

1 A. Solladié-Cavallo, A.C. Dreyfus, F. Sanch and A. Klein, Chem. Lett., 8 (1987) 1583.
2 A. Solladié-Cavallo and N. Khiar, Tetrahedron Lett., 29 (1988) 2189.
3 A. Solladié-Cavallo, J. Suffert and M. Gordon, Tetrahedron Lett., 29 (1988) 2955.
4 R. Lukes, V. Dienstbierova, J. Kovar and K. Blaha, Coll. Czechoslov. Chem. Commun., 26 (1961) 466.

5 A. Solladié-Cavallo and M. Bencheqroun, Tetrahedron Lett., 31 (1990) 2157.
6 Compound $5 a:{ }^{1} \mathrm{H}-\mathrm{NMR}, 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right)$; only one type of signal is observed at the probe temperature $\left(21^{\circ} \mathrm{C}\right)$, below that splitting occurs: $\delta 1.25\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{C}} \mathrm{Bu}\right) ; 2.85\left(\mathrm{bs}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right) ; 3.55(\mathrm{AB}$ part of an $\left.\mathrm{ABX}, 2 \mathrm{H}, \mathrm{CH}_{2}, \Delta \nu=25 \mathrm{~Hz}, J_{\mathrm{AB}}=14 \mathrm{~Hz}, J_{\mathrm{Ax}}=0 \mathrm{~Hz}, J_{\mathrm{BX}}=6 \mathrm{~Hz}\right) ; 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$; $4.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{X}$ part of an $\mathrm{ABX}, \mathrm{CH}(\mathrm{OH}) ; 4.92(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}$ arom) $; 5.0(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}$ arom); $5.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}$ arom) $5.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}\right.$ arom); $7.4(\mathrm{bs}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}) .{ }^{13} \mathrm{C}-\mathrm{NMR}, 50 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta 31.1$ (${ }^{\mathrm{t}} \mathrm{Bu}$), $40.18\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 52.93$ (quat. ${ }^{\mathrm{A}} \mathrm{Bu}$); $55.82\left(\mathrm{O}-\mathrm{CH}_{3}+\mathrm{N}-\mathrm{CH}_{2}\right) ; 68.70,73.94,85.67,93.18$ (CH arom.) $73.94(\mathrm{CH}-\mathrm{O}) ; 103.66,139.92$ (quat. arom.); $152.30(\mathrm{CH}=\mathrm{N}) ; 233.32(\mathrm{C} \equiv \mathrm{O})$. Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Cr}$: C, $53.99 ; \mathrm{H}, 6.04 ; \mathrm{N}, 7.99$. Found C, $53.84 ; \mathrm{H}, 6.35 ; \mathrm{N}, 5.88 \%$.
Compound 5 b: ${ }^{1} \mathrm{H}-\mathrm{NMR}, 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right)$; two types of signal are observed at the probe temperature $\left(21^{\circ} \mathrm{C}\right)$ in CDCl_{3} and in DMSO- d_{6} there is no coalescence when the temperature increases. Isomer $1, \delta 1.20\left(\mathrm{~s}, 9 \mathrm{H},{ }^{t} \mathrm{Bu}\right) ; 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ arom. $) ; 2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 3.5$ (AB part of an ABX, $2 \mathrm{H}, \mathrm{CH}_{2}, \Delta \nu=20 \mathrm{~Hz}, J_{\mathrm{AB}}=14 \mathrm{~Hz}, J_{\mathrm{AX}}=5 \mathrm{~Hz}, J_{\mathrm{BX}}=2 \mathrm{~Hz}$); 4.81 (dd, $1 \mathrm{H}, \mathrm{X}$ part of an $\mathrm{ABX}, \mathrm{CH}-\mathrm{O}$); 5.12 (dd, 1 H arom.); 5.27 ($2 \mathrm{td}, 2 \mathrm{H}$ arom.); 5.78 (dd, 1 H arom.); 7.35 (bs, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$). Isomer $2 . \delta 1.25\left(\mathrm{~s}, 9 \mathrm{H},{ }^{1} \mathrm{Bu}\right) ; 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ arom.) ; $3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right) 3.25\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2}, J=14\right.$ $\mathrm{Hz})=3.5\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$ overlapping with the AB part of isomer 1$) ; 4.7(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{O}) ; 5.1$ and $5.25(2 \mathrm{H}$ arom. overlapping with isomer 1); $5.47(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}$ arom.); 5.85 ($\mathrm{d}, 1 \mathrm{H}, \mathrm{H}$ arom.); 7.45 (bs, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$). ${ }^{13} \mathrm{C}$-NMR $50 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right.$). Isomer $1,618.5\left(\mathrm{CH}_{3}\right) ; 31.0$ (${ }^{[} \mathrm{Bu}$); $40.3\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 53.35$ (quat. $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 56.8\left(\mathrm{~N}-\mathrm{CH}_{2}\right) ; 70.0(\mathrm{CH}-\mathrm{O}) ; 90.84,91.44,94.14,94.58(\mathrm{CH}$ arom.); 105.13, 113.16 (quat. arom.); $152.40(\mathrm{CH}=\mathrm{N}) ; 233.50(\mathrm{C} \equiv \mathrm{O})$.
Compound 5 c : ${ }^{1} \mathrm{H}-\mathrm{NMR}, 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right.$); only one type of signal is observed at the probe temperature ($21^{\circ} \mathrm{C}$); however they are broad and multiplicity is not clear indicating that exchange is occurring at that temperature: $\delta 1.2$ (bs, $9 \mathrm{H},{ }^{1} \mathrm{Bu}$); 2.85 (bs, $3 \mathrm{H}, \mathrm{NCH}_{3}$); 3.57 (bs, $2 \mathrm{H}, \mathrm{CH}_{2}$); 4.95
(bm, $2 \mathrm{H}, 1 \mathrm{H}$ arom. $+\mathrm{CH}-\mathrm{O}$); 5.4 (bm, $2 \mathrm{H}, \mathrm{H}$ arom.); 5.75 (bt, $1 \mathrm{H}, \mathrm{H}$ arom.); 7.35 (bs, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}, 50 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta 30.9\left({ }^{\mathrm{t}} \mathrm{Bu}\right) ; 40.44\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 53.16\left(q u a t .{ }^{\mathrm{t}} \mathrm{Bu}\right) ; 56.90\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; 68.29 (CH-O); 78.6 (d, $J=20 \mathrm{~Hz}, \mathrm{C}$ arom.); 86.34 (C arom.); 91.5 ($2 \mathrm{~d}, J \simeq 30 \mathrm{~Hz}, 2 \mathrm{C}$ arom.); 101.4 (d, $J=13 \mathrm{~Hz}, \mathrm{C}$ arom.); 143.8 (d, $J=261 \mathrm{~Hz}, \mathrm{C}$ arom.); $152.3(\mathrm{CH}=\mathrm{N}), 231.7(\mathrm{C}=0$) .
Compound 2a: ${ }^{1} \mathrm{H}-\mathrm{NMR}, 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.82$ (AB part of an ABX, $2 \mathrm{H}, \mathrm{CH}_{2}, \Delta \nu \simeq 30 \mathrm{~Hz}, J_{\mathrm{AB}}=13 \mathrm{~Hz}, J_{\mathrm{AX}}=3 \mathrm{~Hz}, J_{\mathrm{BX}}=8 \mathrm{~Hz}$); 5.1 (dd, X part of an ABX, $1 \mathrm{H}, \mathrm{CH}$); 6.85 (d, 1H, H arom.); 7.0 (t, 1H, H arom.); 7.3 (td, $1 \mathrm{H}, \mathrm{H}$ arom.); 7.48 (dd, $1 \mathrm{H}, \mathrm{H}$ arom.).

Compound 2b: ${ }^{1} \mathrm{H}-\mathrm{NMR}, 200 \mathrm{MHz}\left(\mathrm{CDCl}_{3} / \mathrm{TMS}\right): \delta 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right) ; 2.5\left(\mathrm{~s}, 3 \mathrm{H}, N-\mathrm{CH}_{3}\right) ; 2.75$ (AB part of an $\mathrm{ABX}, 2 \mathrm{H}, \mathrm{CH}_{2}$, broad); 5.0 (broad dd, X part of an $\mathrm{ABX}, 1 \mathrm{H}, \mathrm{CH}$); $7.1(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}$ arom.); 7.5 (broad d, 1H, H arom.).
7 Flash chromatography on silicagel using as cluent $\mathrm{NEt}_{3} / \mathrm{Et}_{2} \mathrm{O} /$ hexane $10 / 45 / 45$ for compound 3 a and NEt_{3} / AcOEt $10 / 90$ for compounds $\mathbf{3 b}$ and $\mathbf{3 c}$.
8 A. Solladié-Cavallo, S. Quazzotti, S. Colonna and A. Manfredi, Tetrahedron Lett., 30 (1989) 2933.
9 J. Brocard, L. Pelinski and J. Lebibi, J. Organomet. Chem., 337 (1987) C47.
10 V. Gajda, S. Toma and M. Widhalm, Monatsh. Chem., 120 (1989) 147.
11 A. Solladié-Cavallo, G. Lapitajs, P. Buchert, A. Klein, S. Colonna and A. Manfredi, J. Organomet. Chem., 330 (1987) 357.
12 For resolution of the complexes see: (a) A. Solladié-Cavallo, G. Solladié and E. Tsamo, J. Org. Chem., 44 (1979) 4189; (b) S.G. Davies and C.L. Goodfellow, J. Chem. Soc., Perkin Trans. I, (1989) 192.

13 A. Solladié-Cavallo, Adv. Metal-Org. Chem., 1 (1989) 99.

[^0]: * Reference number with asterisk indicates a note in the list of references.

